Как повысить КПД электродвигателя: выбираем решение
В современных электромеханических преобразователях обнаруживаются потери энергии в магнитном, электрическом и механическом режимах, в результате возникают проблемы с выделением тепла, увеличением шума и вибрации. Это связано с низкой эффективностью перемещения элементов, перемагничиванием магнитного поля сердечника якоря электродвигателя или скачком нагрузок. Но возможно ли уменьшить эти «утечки» и таким образом улучшить коэффициент полезного действия, и если да, как это сделать? Эту тему мы рассмотрим в данной публикации.
Современные методы увеличения эффективности работы асинхронных двигателей
Существует общепринятая классификация электрических машин на синхронные, у которых частота вращения ротора совпадает с частотой магнитного поля, и на асинхронные, где магнитное поле вращается с более высокой скоростью, чем ротор.
Электродвигатели последнего типа на сегодняшний день являются наиболее распространенными: около 90% всех двигателей, используемых в мире, являются асинхронными. Они применяются во многих отраслях промышленности, сельского хозяйства и сферы ЖКХ.
Это объясняется тем, что они просты в изготовлении, надежны, доступны по цене и не требуют больших эксплуатационных затрат. Кроме того, КПД асинхронных электродвигателей значительно выше, чем синхронных.
Тем не менее, у такой техники есть и существенные недостатки. Один из них – это высокий пусковой ток, недостаточный пусковой момент, несогласованность механического момента на валу привода с механической нагрузкой (что приводит к резкому увеличению силы тока и избыточным механическим нагрузкам при запуске и пониженной производительности в периоды пониженной нагрузки), невозможность точной регулировки скорости работы и так далее. В результате все эти факторы приводят к значительному снижению эффективности работы.
Чтобы справиться с этими проблемами, специалисты используют различные методы, направленные на повышение КПД асинхронных двигателей. Одним из них является использование частотных преобразователей, которые уменьшают пусковой ток, и, следовательно, пусковую мощность двигателя. Кроме этого, применяются специальные системы управления моментом, которые позволяют точно регулировать мощность двигателя и его скорость в зависимости от потребностей. Это повышает производительность механизма и уменьшает избыточную механическую нагрузку. Также существуют специальные схемы управления током, которые минимизируют потери энергии в механизме и увеличивают его КПД. Все эти методы позволяют достичь более эффективной работы асинхронных двигателей.
Оптимизируем работу промышленного оборудования с помощью контроллеров-оптимизаторов. Эти устройства способны повысить КПД дробилок, вентиляторов, ленточных транспортеров, обрабатывающих станков, крутильных агрегатов, лебедок и другого оборудования, используемого в различных сферах: промышленности, сельском хозяйстве и ЖКХ.
Кроме этого, контроллеры-оптимизаторы могут предотвратить перегрузки кронштейнов при запуске мешалок, нейтрализовать гидроудары в трубопроводах, а также обеспечить плавный запуск тяжелого и очень тяжелого оборудования. Обычные устройства плавного пуска не всегда справляются с этой задачей.
Цена
Контроллеры-оптимизаторы являются весьма эффективными приборами, позволяющими увеличить КПД оборудования. Кроме того, они оказываются более доступными по цене, если сравнивать их с преобразователями. Например, на отечественном рынке можно купить устройство мощностью 90 кВт за сумму около 90–140 тысяч рублей.
Контроллеры-оптимизаторы – это устройства, которые быстро реагируют на изменение напряжения и снижают расходы электроэнергии на 30-40%. Они также помогают уменьшить воздействие реактивной нагрузки на сеть, повысить КПД привода, а также экономят деньги на конденсаторных компенсирующих устройствах. Применение контроллеров-оптимизаторов также помогает продлить срок службы оборудования и повышает экологичность производства.
Важным преимуществом контроллеров-оптимизаторов является их доступная цена в сравнении с преобразователями частоты. Однако, необходимо учитывать, что контроллеры-оптимизаторы не могут использоваться в случаях, когда требуется изменять скорость вращения электродвигателя.
Таким образом, контроллеры-оптимизаторы оперативно реагирует на изменения напряжения, экономят электроэнергию, уменьшают реактивную нагрузку на сеть и повышают КПД привода. Они также помогают сократить расходы на конденсаторные компенсирующие устройства, продлить срок службы оборудованию и повысить экологичность производства. Незаменимы они только в тех случаях, когда необходимо изменять скорость вращения электродвигателя.
Как выбрать лучшее оборудование для повышения КПД
Если вы планируете повысить КПД двигателя своего оборудования, важно правильно выбрать устройство для этой задачи. Выбор будет зависеть от особенностей работы оборудования. Если необходимо изменять скорость привода, то единственно подходящим решением будет приобретение преобразователя частоты. Однако, если скорость вращения двигателя остается неизменной или не требует большой точности изменения, то лучшим решением будет использование контроллеров-оптимизаторов. Они имеют более доступную стоимость по сравнению с преобразователями частоты.
На заметку: Как повысить КПД электродвигателя
КПД – ключевой фактор для эффективности работы электродвигателя. Его наиболее заметные влияющие факторы – степень загрузки по отношению к номинальной, конструкция и модель, степень износа, отклонение напряжения в сети от номинального. Также следует помнить, что перемотка электродвигателя может привести к снижению его КПД.
Для повышения эффективности работы электропривода, важно обеспечивать его загрузку на уровне не менее 75%, увеличивать коэффициент мощности, регулировать напряжение и частоту подаваемого тока, где это возможно. Но не в каждом случае необходимо или возможно реализовывать все из этих мер, так как реализация этих мер зависит от оборудования.
Существуют приборы для повышения КПД электродвигателя, такие как частотные преобразователи, изменяющие скорость вращения двигателя, изменив частоту питающего напряжения, и устройства плавного пуска, ограничивающие скорость нарастания пускового тока и его максимальное значение.
В данной статье мы рассмотрим современные решения для повышения КПД двигателей с позиций экономической целесообразности и эффективности работы.
Частотные преобразователи используются для улучшения работы асинхронных двигателей. Они способны изменять однофазное или трехфазное напряжение с частотой 50 Гц, превращая его в напряжение с настраиваемой частотой, которая обычно варьируется от 1 до 300-400 Гц, но может достигать и 3000 Гц. Более того, преобразователи регулируют также амплитуду напряжения. Это позволяет добиться значительного повышения эффективности работы электродвигателя.
Преобразователь частоты, который в профессиональной среде именуется "частотником", содержит микропроцессор управления, который отвечает за организацию работы электронных ключей, контроль за функционированием оборудования, его диагностику и защиту от повреждений. Кроме того, система состоит из нескольких схем, которые включены в режимы ключей и открывают тиристоры или транзисторы. Преобразователи частоты с тиристорами считаются более эффективными в сравнении с другими видами, так как они способны работать с высокими напряжениями и токами, а их КПД достигает 98%. Однако, при малой мощности, это преимущество практически незаметно.
Два класса приборов, отличающихся своей структурой и принципом работы:
- С непосредственной связью. В таких преобразователях присутствуют выпрямители. Эта система отвечает за отпирание тиристоров и подключение обмотки к сети, что ведет к образованию выходного напряжения со частотой 0-30 Гц и ограниченным диапазоном управления скоростью вращения привода. Такие устройства обычно не используются при оснащении мощного оборудования, регулирующего множество технологических параметров.
- С промежуточным звеном постоянного тока. В таких преобразователях происходит двойное преобразование энергии: входное напряжение выпрямляется, фильтруется и сглаживается, а затем, при помощи инвертора, преобразуется в напряжение с необходимой амплитудой и частотой. КПД оборудования может несколько снижаться из-за этого промежуточного звена, но подобные преобразователи частоты имеют широкое применение благодаря возможности получения на выходе напряжения с высокой частотой.
Наиболее популярными являются преобразователи второго типа, так как они позволяют плавно регулировать обороты двигателей.
Варианты преобразователей, используемые в современных системах управления электроприводами, различаются по своим функциональным возможностям и эффективности применения. Для электроприводов насосов или вентиляторов, например, часто применяются преобразователи с невысокой перегрузочной способностью и U/f-управлением, способные легко управлять начальным значением напряжения для повышения момента двигателя на низких частотах.
Но для более серьезных применений, таких как на прокатных станах, конвейерах, подъемных устройствах и упаковочном оборудовании, рекомендуется использовать частотные преобразователи с векторным управлением. Они не только могут регулировать частоту и амплитуду выходного напряжения, но и фазы тока через обмотки статора.
Торможение двигателя также может быть контролируемым с помощью специальных функций замедления, главным образом управляемых «частотниками», оснащенными встроенными или внешними блоками торможения и тормозным резистором, а также рекуперативным блоком торможения во время динамического торможения. Такие устройства особенно важны для механизмов станков и конвейеров.
Некоторые комплексные системы, например, в робототехнике, дерево- и металлообработке, используют сложные частотные преобразователи с обратной связью, которые обеспечивают повышенную точность и надежность в замкнутых системах для поддержания постоянной скорости вращения в условиях переменной нагрузки.
Недавно финансисты отметили, что стоимость "частотников" является очень волатильной. За год-полтора цены на эти устройства значительно увеличились. В настоящее время колебания валютного курса являются одной из причин такого явления. В 2021 году частотные преобразователи производства как России, так и других стран, мощностью 90 кВт, могли обойтись покупателям примерно в 200—700 тысяч рублей.
Достоинства и недостатки преобразователя частоты
Описанный выше принцип работы преобразователя частоты для асинхронного двигателя обладает несколькими неоспоримыми достоинствами. Прежде всего, он обеспечивает снижение расхода электроэнергии, благодаря чему удается повысить коэффициент полезного действия машины. Кроме того, такая система гарантирует плавный запуск привода, высокую точность регулировки и увеличение пускового момента. Важным преимуществом является также стабилизация скорости вращения при переменной нагрузке.
Однако стоит заметить, что у «частотника» есть и свои недостатки. К ним можно отнести относительно высокую стоимость установки, а также возможное создание электромагнитных помех в процессе работы.
Существуют устройства плавного пуска (УПП), которые используются для обеспечения плавного запуска, разгона и остановки электродвигателя. Они ограничивают скорость увеличения пускового тока в течение определенного времени. Однако традиционные устройства плавного пуска не способны повысить КПД и могут применяться только для управления приводами с небольшой нагрузкой на валу.
Контроллеры-оптимизаторы - это разновидности УПП, которые позволяют повысить энергоэффективность двигателей. Они согласовывают крутящий момент с моментом нагрузки и способствуют снижению потребления электроэнергии на минимальных нагрузках на 30–40%. Контроллеры-оптимизаторы предназначены для приводов, которые не нуждаются в изменении числа оборотов двигателя.
Например, эскалатор потребляет большое количество энергии, и для снижения энергопотребления при помощи преобразователя частоты, нужно уменьшить скорость эскалатора. Однако, это невозможно, так как это увеличит время подъема пассажиров. Контроллеры-оптимизаторы позволяют снизить энергопотребление без изменения скорости электропривода в тех случаях, когда он недогружен.
Контроллеры-оптимизаторы представляют собой компоненты, которые контролируют фазы тока и напряжения питания электродвигателя. В результате этого осуществляется полное управление приводом на всех его этапах работы, а также защита его от таких аномалий, как нарушение чередования фаз или пониженного/повышенного напряжения. Это устройство эффективно согласует значение крутящего момента, развиваемого двигателем, и значение механического момента, нагружающего вал привода. Коэффициент мощности повышается, при этом скорость вращения ротора остается прежней. Важно отметить, что контроллеры-оптимизаторы не требуют подключения дополнительных устройств, так как их функциональность является завершенной.
Кроме того, контроллеры-оптимизаторы обладают способностью прекращать брать мощность из питающей сети в те моменты, когда полупроводниковые переходы тиристоров закрыты, то есть не пропускают электрический ток. Открываются тиристоры при поступлении управляющих импульсов. Задержка подачи управляющих импульсов определяется степенью нагрузки привода. При переходе тока через ноль тиристоры закрываются.
Очень важно отметить, что контроллеры-оптимизаторы реагируют на изменение нагрузки настолько оперативно, что скорость реакции составляет лишь сотые доли секунды.
Фото: freepik.com